
Java Assistant 1.6

On-the-y Class Browser

www.docs.uu.se/~adavid/java/javaindex.html

Alexandre David
Uppsala University
Department of Computer Systems
adavid@docs.uu.se
www.docs.uu.se/~adavid
February 14, 2000

Contents

1 The Project 3
1.1 Introduction . 3
1.2 Requirements/Features . 3
1.3 Design . 4

1.3.1 Architecture . 4
1.3.2 The Core . 5
1.3.3 The GUI . 5
1.3.4 Customization . 6

1.4 Implementation . 6

2 Distribution 7
2.1 License . 7
2.2 Files . 15

2.2.1 Executables . 15
2.3 Versioning . 15
2.4 Tested Systems . 15
2.5 TODO . 16

3 User's Manual 17
3.1 Basics . 17
3.2 Assistant . 17
3.3 Options . 19

3.3.1 Source Viewer . 19
3.3.2 Swing/HTML Source Viewer . 19

3.4 Package Viewer . 20
3.5 Package Viewer . 20
3.6 Other Components . 20

1

Chapter 1

The Project

1.1 Introduction

The aim of the project is to develop an assistant to help to program in Java. In my experience,
books are not very practical reference and I prefer online reference. Another problem with books
is that they do not contain your own programs (!). Sun has a very nice API generation via javadoc
and it is usable but not practical and fast as it should be: typically you want a short and quick
answer concerning the argument of some function, or how a function is named. Typically you
would like only the public methods, sorted alphabetically to �nd them quickly and easily. The
javadoc API does not provide this. There is an alphabetical index of all the compiled java sources
but that's not practical and the methods/�elds/constructors of the classes are not presented in an
eÆcient way, which is one has to click on a name to see the signature.

The weakness of javadoc is that one has to recompile the documentation each time one changes
something in the source code whereas an on-the-y tool would not bother about this. Using a
component which has no javadoc API could be possible with a such tool. It is also not possible
to browse all your installed classes at once, or browse in a package directed way. Furthermore
information in the API is limitted by the javadoc tag in the source code which would be nice to
look at (even if no source code nor API is available!).

Another motivation is the speed of access to information, one should type a class name, maybe
incomplete, press enter and get a listing of availble constructors, �elds and methods �ltered, sorted
and clickable to get access to the source code of that particular constructor/method. This should
be fast: 3 seconds to write the query and get the result at most. Sorted methods are crucial to �nd
for example a void setSomething(what I want) or a something getIt() method type. Access
to the �elds should give all the constants without lot of decorations that confuse the reader in the
mess of information of the javadoc API.

We can now summarize what we want from such a tool.

1.2 Requirements/Features

The tool should be:

� user friendly: fast and easy to use; should not take the whole screen and be just large enough
as an assistant.

� eÆcient: display as litle information as needed, and display only relevant information.
� powerful: o�er �ltering, decompiling, disassembing and easy browsing capabilities at the
source level or the API level.

� on-the-y: access all the installed classes of a Java Virtual Machine and access all the
available sources on a computer in compressed format (src.zip distributed with JDK) or not
(your own development directory).

3

4 CHAPTER 1. THE PROJECT

� useful: bring relevant information, answer questions of a developper when using a component,
explore a component, a package in a hierarchical way.

� platform independent: run under Windows and Linux basically (Unix platforms follow)
although irritating di�erences concerning the paths characters and other stu�.

Expected functionalities of the tools are:

� browse classes, packages and java source code (available or not).
� browse class API, class hierarchy.
� query class name, automatic completion, automatic search.
� cross references and browsing capabilities: when �nding an interface implemented by a
queried class, access to it should be as easy as one click; similar capabilities concerning the
source code.

� searching and extracting capabilities on the source code.
� practical cut-and-paste from extracted source code, which is of the main interest when
implementing an interface.

Story of the tool The tool was called Assistant and written in Java. The �rst version emerged
with JDK 1.0 where reection was poor. Version 2 was greatly improved and o�ered all the
basic wanted features but showed itself limited though a number of enhancements, among them
dynamic package discovery. The latest revision was 2.4 and is no longer distributed. Version 3 is a
complete rewrite with a totally new architecture: performance and usability improvements, better
maintainability were a concern. The project was then renamed: the distribution is called Java
Assistant (current 1.6) ; the main tools are Assistant (current 3.4) and PackageViewer (current
1.0.2).

Java Assistant 1.6 meets all the desired requirements. A TODO list emerged from its usage
and contains desired improvements that were forgotten or diÆcult to guess when implementing
the tool and bugs to �x. A distribution is available for free (see the license in section 2.1

Java Packages Used Reection is heavily used (the whole java.lang.reflect package), the
GUI is based on AWT components and AWT lightweight components, Swing is used for the
HTML java source browser, java.io is very used for all the stream redirection and �le searching
and java.util.zip is intensively used for jar/zip archive exploration (class and source search).

1.3 Design

The design emphasizes a modular architecture with a core which does the all the querying and
searching independent from the GUI which uses the core. The GUI has components which are
as much as possible independent from each other and thus reusable. The distribution contains
java �les which are not directly related to Assistant (and not used by it), these �les are useful
components.

1.3.1 Architecture

The architecture is organized into the following packages:

� adavid.awt: the graphical components based on java.awt with java lightweight compo-
nents. This package contains alternative enhanced components (FocusableLabel, NiceButton,

NiceCheckbox, NiceLabel, BorderedPanel, beta-research components (MCList,MCItem,
tree components (AWT based, lightweight TNode, TNodeRenderer, TListener, ImageTNodeRenderer,

DefaultTNodeRenderer), and static libraries-component-managers like (ActionManager,
AutoFocuser, DialogFactory, PopupManager). The idea is to take advantage of the speed
of the AWT components over Swing, that's why the tree was developped.

� adavid.io: this package contains string related stream facilities to redirect ouputs mainly.

1.3. DESIGN 5

� adavid.reflect: this package is the core of the Assistant. Key classes are ClassReflect,
JavaFinder, PackageFinder, PackageResource to explore the classes and packages and
Decompiler which is a general interface to use third party decompilers.

� adavid.swing: this package contains mainly reusable components, only JViewer, which is
the Swing-HTML java viewer is relevant for Assistant.

� adavid.util: this package contains executable programs, quali�ed as utilities and compo-
nents that are useful similarly to java.util. Assistant and PackageViewer are there. Sort-
ing related classes and other useful components are there like Bundle, ResourceLoader,

JResource in charge of automatic initialization and internationalization.

1.3.2 The Core

The core is based on reection, directory and zip/jar exploration. One has to distinguish between
purely reection functionalities which are to access the API from the classes and the exploration
to answer to the queries (completion, search, match, package browsing).

Reection adavid.reflect.ClassReflect completes the java.lang.Class class and provides
high level more powerful methods to gain more information on the classes. It provides built-in
�lters which command the behaviour of the methods.

adavid.reflect.PackageFinder is in charge of �nding all the installed packages. I distinguish
between possible classes and real classes for eÆciency: when a package is open and searched
(via adavid.reflect.PackageResource), classes are really checked. To validate a package, at
least one class has to be found and validated. adavid.reflect.PackageFinder explores the
directories and the zip/jar �les based on the classpath information retrieved from the virtual
machine. Partial results like the classpath content and the package list are serialized and saved
($HOME/.PackageFinder.info) to avoid recomputing them. However the classpath is checked
to know if an update is necessary or not at each start.

Exploration adavid.reflect.PackageResource is in charge of �nding the related information
of a package, like all its classes, the class extensions of a class inside this package. A package
resource is related to an entry in the classpath and a package de�nition.

adavid.reflect.JavaFinder is in charge of �nding the java source code and performing search
in the source. Decompilation is NOT here. It can return .java or .jj source �les. It contains the
HTML �lter/generator to feed to the HTML viewer: this is related to source code manipulation.

Customization Access to third party decompilers and disassemblers is done via an interface.
The linking and is dynamic and it uses reection: someone implements this interface and declares
it in a con�guration �le (see the customization section 1.3.4) and the Assistant uses it, that's all!
The interface is adavid.reflect.Decompiler.

Internationalization and automatic initialization is addressed via the class adavid.util.Bundle.
Some extensions of this class are provided by adavid.util.ResourceLoaderand adavid.util.JResource
for Swing related resource.

Other classes are used (Sortable*) for sorting and retrieving information easily on methods
and constructors.

To really see how the core works, use the Assistant on it! You will see how useful on-the-y
source browsing can be.

1.3.3 The GUI

The GUI is based on reusing the components from the core and the AWT/Swing components, so
it is pretty straight forward, just setup the components and listen to the events. Some more work
is done in the package viewer that has to build the di�erent trees. The GUI application is in the
util package since they are the utilities themselves, specialized GUI in a way, not general reusable

6 CHAPTER 1. THE PROJECT

GUI components as in the awt and swing packages. One common points is that the components
listen to their own events as much as possible to avoid splitting the event handling through many
objects. The main parts are:

� adavid.util.Assistant: the main window, where a text �eld allows to enter class/interface
names. Upon success one sees a panel where one can choose to view constructors, �elds or
methods. All is gathered in adavid.util.Assistant since it is an independent tool based
on all the other components. This controls an option dialog which tunes the �lters and the
java source options.

� adavid.util.PackageViewer: the package browser window, uses heavily the tree compo-
nent and communicates with the Assistant to send queries on selected classes. It �nds the
class hieararchy per packages and builds the package hierarchy. The package viewer register
all the packages and is invoked to initialize them if match is needed: then all the packages
are queried.

� adavid.awt.DialogFactory: provides all the dialog windows, to ask for simple con�rma-
tion, and the simple (and fast) source viewer that has built-in search capabilities.

� adavid.swing.JViewer: provides the swing-HTML browser/viewer. It listens to its event
and can query the core to get source extracts when clicking on links.

1.3.4 Customization

This is based on reection. The idea is: it is not practical to keep a precious �le to mod-
ify and control the con�guration, one can lose it. Instead, adavid.util.JDefaultResource

generates a con�guration �le associated to a class (using reection) by looking at accessible
�elds (public, or via a special class). Access can be granted if the class extends a special class
adavid.util.DataResource which has protected method which can be overriden (by themselves:
super.callMe(args)) and accessed via package rights by adavid.util.Bundle. This is advanced
method right usage. It is possible to implements a special interface (adavid.util.DataResourceAccessible),
which is equivalent though poses security access problems because it opens a bit too much com-
pared to the extension solution. When initializing a class, calls to adavid.util.Bundle may
save a lot of trouble of initializing components (awt), setting listeners. . . and it sets up strings
as well, which can be overriden in this special generated �le. More information is given in the
generated �le as comments. See adavid.reflect.Bundle, adavid.reflect.ResourceLoader,

adavid.reflect.JResource APIs for more information.
This allows to solve internationalization issues by just changing the content of strings and

customization issues by redeclaring new colors, titles, options for the components. A special
naming convention is adopted to make this work, see the related classes. Extension to swing
components becomes specially powerful if we consider the number of customization options that
we have.

Dynamic Linking To Disassemblers/Decompilers

Decompilation settings is handled by the customization capabilities by just rede�ning a string
which contains the list of decompiler interfaces. Then reection is used to invoke the class from
an empty constructor.

1.4 Implementation

It is straight forward from the component based design with the well de�ned dependencies. Javadoc
tags were included, though not everywhere, but this is in the TODO list. Some political choices
were: as many static methods were used to allow easy reuse of classes (without instanciating) and
methods were declared as much public as possible. Self explanatory naming was used as much as
possible with as little inline comments as possible (when needed), for readability (by Assistant!).

Chapter 2

Distribution

A distribution free of charge is available at: www.docs.uu.se/~adavid/java/javaindex.html The
package is distributed as a single zip archive (adavid pack.zip) which contains all.

2.1 License

The license is LGPL:

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991 Copyright 1991 Free Software Foundation, Inc. 675 Mass

Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2

because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share

and change it. By contrast, the GNU General Public Licenses are intended to

guarantee your freedom to share and change free software--to make sure the

software is free for all its users.

This license, the Library General Public License, applies to some specially

designated Free Software Foundation software, and to any other libraries whose

authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom to

distribute copies of free software (and charge for this service if you wish),

that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you can

do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions

translate to certain responsibilities for you if you distribute copies of the

library, or if you modify it.

7

8 CHAPTER 2. DISTRIBUTION

For example, if you distribute copies of the library, whether gratis or for a

fee, you must give the recipients all the rights that we gave you. You must

make sure that they, too, receive or can get the source code. If you link a

program with the library, you must provide complete object files to the

recipients so that they can relink them with the library, after making changes

to the library and recompiling it. And you must show them these terms so they

know their rights.

Our method of protecting your rights has two steps: (1) copyright the

library, and (2) offer you this license which gives you legal permission to

copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that everyone

understands that there is no warranty for this free library. If the library is

modified by someone else and passed on, we want its recipients to know that what

they have is not the original version, so that any problems introduced by others

will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that companies distributing free software will

individually obtain patent licenses, thus in effect transforming the program

into proprietary software. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU

General Public License, which was designed for utility programs. This license,

the GNU Library General Public License, applies to certain designated libraries.

This license is quite different from the ordinary one; be sure to read it in

full, and don't assume that anything in it is the same as in the ordinary

license.

The reason we have a separate public license for some libraries is that they

blur the distinction we usually make between modifying or adding to a program

and simply using it. Linking a program with a library, without changing the

library, is in some sense simply using the library, and is analogous to running

a utility program or application program. However, in a textual and legal

sense, the linked executable is a combined work, a derivative of the original

library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License

for libraries did not effectively promote software sharing, because most

developers did not use the libraries. We concluded that weaker conditions might

promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of

those programs of all benefit from the free status of the libraries themselves.

This Library General Public License is intended to permit developers of non-free

programs to use free libraries, while preserving your freedom as a user of such

programs to change the free libraries that are incorporated in them. (We have

not seen how to achieve this as regards changes in header files, but we have

achieved it as regards changes in the actual functions of the Library.) The

hope is that this will lead to faster development of free libraries.

2.1. LICENSE 9

The precise terms and conditions for copying, distribution and modification

follow. Pay close attention to the difference between a "work based on the

library" and a "work that uses the library". The former contains code derived

from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General

Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a

notice placed by the copyright holder or other authorized party saying it may be

distributed under the terms of this Library General Public License (also called

"this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so

as to be conveniently linked with application programs (which use some of those

functions and data) to form executables.

The "Library", below, refers to any such software library or work which has

been distributed under these terms. A "work based on the Library" means either

the Library or any derivative work under copyright law: that is to say, a work

containing the Library or a portion of it, either verbatim or with modifications

and/or translated straightforwardly into another language. (Hereinafter,

translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making

modifications to it. For a library, complete source code means all the source

code for all modules it contains, plus any associated interface definition

files, plus the scripts used to control compilation and installation of the

library.

Activities other than copying, distribution and modification are not covered

by this License; they are outside its scope. The act of running a program using

the Library is not restricted, and output from such a program is covered only if

its contents constitute a work based on the Library (independent of the use of

the Library in a tool for writing it). Whether that is true depends on what the

Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete

source code as you receive it, in any medium, provided that you conspicuously

and appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and distribute a copy of this License along

with the Library.

You may charge a fee for the physical act of transferring a copy, and you may

at your option offer warranty protection in exchange for a fee.

10 CHAPTER 2. DISTRIBUTION

2. You may modify your copy or copies of the Library or any portion of it,

thus forming a work based on the Library, and copy and distribute such

modifications or work under the terms of Section 1 above, provided that you also

meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that

you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all

third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of

data to be supplied by an application program that uses the facility, other

than as an argument passed when the facility is invoked, then you must make

a good faith effort to ensure that, in the event an application does not

supply such function or table, the facility still operates, and performs

whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose

that is entirely well-defined independent of the application. Therefore,

Subsection 2d requires that any application-supplied function or table used

by this function must be optional: if the application does not supply it,

the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable

sections of that work are not derived from the Library, and can be reasonably

considered independent and separate works in themselves, then this License, and

its terms, do not apply to those sections when you distribute them as separate

works. But when you distribute the same sections as part of a whole which is a

work based on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based on the

Library.

In addition, mere aggregation of another work not based on the Library with

the Library (or with a work based on the Library) on a volume of a storage or

distribution medium does not bring the other work under the scope of this

License.

3. You may opt to apply the terms of the ordinary GNU General Public License

instead of this License to a given copy of the Library. To do this, you must

alter all the notices that refer to this License, so that they refer to the

ordinary GNU General Public License, version 2, instead of to this License. (If

a newer version than version 2 of the ordinary GNU General Public License has

appeared, then you can specify that version instead if you wish.) Do not make

any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so

the ordinary GNU General Public License applies to all subsequent copies and

derivative works made from that copy.

2.1. LICENSE 11

This option is useful when you wish to copy part of the code of the Library

into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it,

under Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you accompany it with the complete corresponding

machine-readable source code, which must be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a

designated place, then offering equivalent access to copy the source code from

the same place satisfies the requirement to distribute the source code, even

though third parties are not compelled to copy the source along with the object

code.

5. A program that contains no derivative of any portion of the Library, but

is designed to work with the Library by being compiled or linked with it, is

called a "work that uses the Library". Such a work, in isolation, is not a

derivative work of the Library, and therefore falls outside the scope of this

License.

However, linking a "work that uses the Library" with the Library creates an

executable that is a derivative of the Library (because it contains portions of

the Library), rather than a "work that uses the library". The executable is

therefore covered by this License. Section 6 states terms for distribution of

such executables.

When a "work that uses the Library" uses material from a header file that is

part of the Library, the object code for the work may be a derivative work of

the Library even though the source code is not. Whether this is true is

especially significant if the work can be linked without the Library, or if the

work is itself a library. The threshold for this to be true is not precisely

defined by law.

If such an object file uses only numerical parameters, data structure layouts

and accessors, and small macros and small inline functions (ten lines or less in

length), then the use of the object file is unrestricted, regardless of whether

it is legally a derivative work. (Executables containing this object code plus

portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the

object code for the work under the terms of Section 6. Any executables

containing that work also fall under Section 6, whether or not they are linked

directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a

"work that uses the Library" with the Library to produce a work containing

portions of the Library, and distribute that work under terms of your choice,

provided that the terms permit modification of the work for the customer's own

use and reverse engineering for debugging such modifications.

12 CHAPTER 2. DISTRIBUTION

You must give prominent notice with each copy of the work that the Library is

used in it and that the Library and its use are covered by this License. You

must supply a copy of this License. If the work during execution displays

copyright notices, you must include the copyright notice for the Library among

them, as well as a reference directing the user to the copy of this License.

Also, you must do one of these things:

a) a) Accompany the work with the complete corresponding machine-readable

source code for the Library including whatever changes were used in the work

(which must be distributed under Sections 1 and 2 above); and, if the work

is an executable linked with the Library, with the complete machine-readable

"work that uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified executable

containing the modified Library. (It is understood that the user who

changes the contents of definitions files in the Library will not

necessarily be able to recompile the application to use the modified

definitions.)

b) Accompany the work with a written offer, valid for at least three years, to

give the same user the materials specified in Subsection 6a, above, for a

charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a

designated place, offer equivalent access to copy the above specified

materials from the same place.

d) Verify that the user has already received a copy of these materials or that

you have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must

include any data and utility programs needed for reproducing the executable from

it. However, as a special exception, the source code distributed need not

include anything that is normally distributed (in either source or binary form)

with the major components (compiler, kernel, and so on) of the operating system

on which the executable runs, unless that component itself accompanies the

executable.

It may happen that this requirement contradicts the license restrictions of

other proprietary libraries that do not normally accompany the operating system.

Such a contradiction means you cannot use both them and the Library together in

an executable that you distribute.

7. You may place library facilities that are a work based on the Library

side-by-side in a single library together with other library facilities not

covered by this License, and distribute such a combined library, provided that

the separate distribution of the work based on the Library and of the other

library facilities is otherwise permitted, and provided that you do these two

things:

a) Accompany the combined library with a copy of the same work based on the

Library, uncombined with any other library facilities. This must be

distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it

is a work based on the Library, and explaining where to find the

accompanying uncombined form of the same work.

2.1. LICENSE 13

8. You may not copy, modify, sublicense, link with, or distribute the Library

except as expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense, link with, or distribute the Library is void, and will

automatically terminate your rights under this License. However, parties who

have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.

However, nothing else grants you permission to modify or distribute the Library

or its derivative works. These actions are prohibited by law if you do not

accept this License. Therefore, by modifying or distributing the Library (or

any work based on the Library), you indicate your acceptance of this License to

do so, and all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the original

licensor to copy, distribute, link with or modify the Library subject to these

terms and conditions. You may not impose any further restrictions on the

recipients' exercise of the rights granted herein. You are not responsible for

enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues), conditions

are imposed on you (whether by court order, agreement or otherwise) that

contradict the conditions of this License, they do not excuse you from the

conditions of this License. If you cannot distribute so as to satisfy

simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Library at all.

For example, if a patent license would not permit royalty-free redistribution of

the Library by all those who receive copies directly or indirectly through you,

then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply, and

the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or

other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system which is implemented by public license practices. Many

people have made generous contributions to the wide range of software

distributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to

distribute software through any other system and a licensee cannot impose that

choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

14 CHAPTER 2. DISTRIBUTION

12. If the distribution and/or use of the Library is restricted in certain

countries either by patents or by copyrighted interfaces, the original copyright

holder who places the Library under this License may add an explicit

geographical distribution limitation excluding those countries, so that

distribution is permitted only in or among countries not thus excluded. In such

case, this License incorporates the limitation as if written in the body of this

License.

13. The Free Software Foundation may publish revised and/or new versions of

the Library General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address

new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and "any later

version", you have the option of following the terms and conditions either of

that version or of any later version published by the Free Software Foundation.

If the Library does not specify a license version number, you may choose any

version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs

whose distribution conditions are incompatible with these, write to the author

to ask for permission. For software which is copyrighted by the Free Software

Foundation, write to the Free Software Foundation; we sometimes make exceptions

for this. Our decision will be guided by the two goals of preserving the free

status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR

THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA

BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER

OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

2.2. FILES 15

2.2 Files

The adavid pack.zip archive contains:

� VERSION 1.6: the �le version tag containing the change log, the todo list.
� INSTALL: installation manual with a mini how-to.
� jassistant.bat: windoze script �le, one should edit it to setup special classpaths.
� Jassistant.pif: the windoze property �le for the script.
� readme.txt: a quickhelp and license �le.
� adavid.jar: the class archive, do not unzip it.
� adavid.zip: the source archive, do not unzip it, use Assistant to browse it.
� adavid html.zip: the API generated by javadoc (JDK 1.2.2 under windoze), unzip it if you
want to browse it!

� install: the linux install script.
� tosun: the Sun/Solaris translation script which runs install.
� Assistant.ps.gz,Assistant.pdf: this document in postscript compressed and portable
document formats.

2.2.1 Executables

The package has di�erent tools/utilities that can be run independently. By running them without
argument one gets an help on them. The help is concise and suÆcient.

� adavid.util.JDefaultResource: generated default con�guration �les from a class.
� adavid.util.JMakefile: generates Makefile �les for a java project, enters recursively
directories. Di�erent con�guration options are available.

� adavid.util.StatSource: gives statistics on sources.
� adavid.util.PackageViewer: the Assistant package viewer, can be started separately.
� adavid.util.Assistant: Assistant, see the readme.txt �le or the About dialog for the
available options.

� adavid.reflect.ClassReflect: test reection, get information, run it without arguments
to get its usage.

� adavid.reflect.JavaFinder: test reection, get information on source code, run it without
arguments to get its usage.

� adavid.reflect.PackageFinder: test reection, get information, run it without arguments
to get its usage.

2.3 Versioning

The distribution has a double versioning scheme: the package version (current 1.6) and the �le
version per class. The changes are related in the VERSION xx �le which is the tag �le for the
distribution. Each �le has a javadoc version tag, as well as author tag (set to myself!).

Distributions are automatically generated from the source and html directories.

2.4 Tested Systems

Tested systems are Windows 9x/NT: JDK 1.2.2, Linux RH 5.2/6.0: JDK 1.1.7, Sun/Solaris: JDK
1.2. Ka�e has been tested under Linux but it works poorly. The JIT tya works very well.

The Windows virtual machine implementation is much more performant, it is noticeable. The
implementation of the swing-html java browser as well as the html-�lter/generator is more a
prototype to test the concept. It has serious performance concerns that are on the TODO list.

One important thing to know is that Assistant pushes the virtual machine to its limits and
it is possible to end up with segmentation fault or a core dump from the virtual machine! This

16 CHAPTER 2. DISTRIBUTION

is due to a very heavy use of reection and very high number of loaded classes into the virtual
machine which seems not to be able to unload them when not needed.

2.5 TODO

As for every project, here is the TODO list:

� solve the problems between ScrollPane and TNode this seems to work perfectly under Win-
doze, the motif awt implementation seems not to be that good.

� improve the serie TextArea stream/writer, that's not wonderful.
� review the sort in the package viewer.
� review the class search, .mocha is tried and should not be tried.
� reimplement in a more eÆcient way the java viewer, now: java=>html->swing.parse->document->display
future: java=>document->display.

� history of the most requested classes to avoid retyping them
� 100% Swing GUI.
� improve the javadoc tags, and add little more comments.

Chapter 3

User's Manual

3.1 Basics

Assistant is aimed at helping java application development. Features are:

� browse classes, packages and java source code (available or not).
� browse class API, class hierarchy.
� query class name, automatic completion, automatic search.
� cross references and browsing capabilities: when �nding an interface implemented by a
queried class, access to it should be as easy as one click; similar capabilities concerning the
source code.

� searching and extracting capabilities on the source code.
� practical cut-and-paste from extracted source code, which is of the main interest when
implementing an interface.

One can use it as a tool or one can use its components to build other programs. In this view
the distribution provides other classes not directly related to Assistant.

The API is javadoc produced and the source can be browsed with Assistant itself (which is
much better).

Note that the cursor changes: hand means that something is clickable. Furthermore the focus
follows the mouse when something clickable is entered.

3.2 Assistant

A typical commmand under Linux to start Assistant is: java -ms128m -mx128m -Djava.source.path=$JAVASRC

adavid.util.Assistant -redirect -confirm &> /dev/null which is produced by the install
script with the variables set correctly. $JAVASRC gives the path of the java sources. It is a normal
path format with an addition: somewhere.zip[inside zip] will specify to look at the directory
inside zip inside the somewhere.zip �le. The option -redirect tells to redirect outputs to
internal dialogs and the option -confirm tells to ask for con�rmation when exiting.

The main window is depicted in �gure 3.1
Possible operations are:

� enter a class/interface in the \class/interface" text �eld, and then press [ENTER] to start
the query.

� press the Packages button to open the package viewer.
� press the About button which opens a dialog window with the content of the readme.txt

(that can be translated and reset using the customization capabilities).

When a query is launched, it may work and then further operations are available, or it fails
and then the text is selected and the user has to try another one. An automatic match may be

17

18 CHAPTER 3. USER'S MANUAL

Figure 3.1: Assistant: the main window.

necessary, then the package viewer is invoked since it contains information to search via all the
packages.

The opened panel contains a super class list on the left, which gives the class hierarchy (exten-
sion hiearchy), a list of implemented interfaces on the right and match options: homonyms and all
matches. There is a list which can be switch with checkboxes to view either constructors, �elds or
methods.

Further operation are:

� check the homonyms checkbox: Assistant tries to �nd all classes with a given name in all
the packages, the panel is updated and the list on the upper left corner gives now all the
found classes.

� check the all matches checkbox: Assistant tries to match the given name with all the classes
in all the packages, and sorts the list by match, the panel is updtaed and the list on the
upper left corner gives now all the found classes.

� choose to view constructors/�elds/methods
� press the source button to retrieve the source code: preference order is con�gured in the
options dialog. The order is java - jj - uncompile - disassemble. The user chooses which
�rst, and in case of failure, Assistant tries the others. In case of total failure, the button is

3.3. OPTIONS 19

disabled.
� press the options button to open the options dialog depicted in �gure 3.2.
� select a method/constructor to get the source of that particular method/constructor.

3.3 Options

The options dialog is depicted in �gure 3.2.

Name - Type This dialog commands the behaviour of the Assistant. Names options are avail-
able to display names with their full de�nition or a shortcut, e.g. java.lang.String or String.
This is con�gurable for the names of the �elds/methods or the types (results/arguments).

Access scope This commands the �lter to let show only speci�ed scope methods/�elds/constructors.

Modi�ers This �lters the methods/�elds/constructors by modi�ers. any disables the sub�lter,
present requires the presence of the modi�er and absent requires the absence of the modi�er.

Source This commands the order to try to �nd the source code of a class. Order is java - jj -
uncompile - disassemble. The user chooses which �rst and Assistant tries in this order. \jj" refers
to the javacc parser generator source code.

There is a checkbox called HTML which enables the HTML source code viewer mode instead
of plain text (well it is HTML-like, HTML is not used any more). Another option is \Single
Window" to use only one window for the viewer and the arrows \<<" and \>>" allow to navigate
though the history.

Decompiler A choice allows the user to choose among the installed decompilers/disassemblers
to use. A button Options allows to con�gure that particular decompiler/disassembler. See the
Decompiler interface to implement this functionality. A default \gate" is given to use the mocha
decompiler per default. The gate implements Decompiler and is called mocha.MochaGate. It is
provided as an example for those who want to integrate other decompilers/disassemblers. The
gate itself is based on reection since mocha is obfuscated with invalid names.

Sorting Commands the sorting capabilities: one can enable or not sorting and set the sorting
from the modi�ers, or not (in that case only the names).

Update packages This button rereads information and rebuild the .PackageFinder.info �le.
It could be useful if a new package is installed and the classpath has not changed. Otherwise
Assistant can be started with the -update ag.

3.3.1 Source Viewer

The raw text source viewer is depicted in �gure 3.3. It provides basic search capabilities in the
source code with a �nd button and a text �eld to enter the text to �nd. Note that pressing
[ENTER] in the text �eld activates the search. The search is done from the cursor position in the
text area which shows the source.

3.3.2 Swing/HTML Source Viewer

This is basically the same viewer as the raw text viewer though with colored-syntax source code
(simple, based only on keywords and fairly simple: see highlighted words in the comments). It
is depicted in �gure 3.4. The main di�erence is that one can click the anchors which are marks
in the java source code, in javadoc format as see somewhere# function. If one enters such a

20 CHAPTER 3. USER'S MANUAL

string in the text �eld, the same happens if one presses the Open button. The source viewer may
record an history if Assistant is con�gured to use a single window for the source in HTML mode
(though HTML is not used any more).

Figure 3.5 shows what happens if one activates the link in �gure 3.4.
Figure 3.6 shows an example of colored disassembled code.

3.4 Package Viewer

It is depicted in �gure 3.7. The main panels are: the package tree on the left and the corresponding
class tree for a selected package on the right. To open a package, simple click on the blue triangle.
Simple click on a package shows information about this package at the bottom of the window.
Double click opens that package.

3.5 Package Viewer

Inside the class tree: simple icons mean normal class. Icons marked i denote interfaces and icons
marked A denote abstract classes. These classes are clickable and then short information is given
below (a small list which gives the parent class and the implemented interfaces) and a button
is updated with their name. Double clicking the classes will send a query to Assistant. This is
equivalent to press the button with the name of that class.

Inside the tree, pressing *" on a focused package opens completely this subtree. The trees are
navigable with the arrows and the enter keys.

3.6 Other Components

Other independent components are provided, in the adavid.swing and in the adavid.awt pack-
ages. Use the assistant to get more information on them. They are not related to Assistant.

3.6. OTHER COMPONENTS 21

Figure 3.2: Assistant: options dialog window.

22 CHAPTER 3. USER'S MANUAL

Figure 3.3: Assistant: raw source code.

3.6. OTHER COMPONENTS 23

Figure 3.4: Assistant: html formatted source code.

24 CHAPTER 3. USER'S MANUAL

Figure 3.5: Assistant: html formatted source code, following the link in �gure 3.4.

3.6. OTHER COMPONENTS 25

Figure 3.6: Assistant: disassembled function.

26 CHAPTER 3. USER'S MANUAL

Figure 3.7: Package Viewer: the main window.

